The Grothendieck-Katz Conjecture for certain locally symmetric varieties

نویسندگان

  • Benson Farb
  • Mark Kisin
چکیده

Using Margulis’s results on lattices in semisimple Lie groups, we prove the GrothendieckKatz p-Curvature Conjecture for certain locally symmetric varieties, including the moduli space of abelian varieties Ag when g > 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture

Using Margulis’s results on lattices in semisimple Lie groups, we prove the GrothendieckKatz p-Curvature Conjecture for many locally symmetric varieties, including HilbertBlumenthal modular varieties and the moduli space of abelian varieties Ag when g > 1.

متن کامل

Toric Varieties with Huge Grothendieck Group

In each dimension n ≥ 3 there are many projective simplicial toric varieties whose Grothendieck groups of vector bundles are at least as big as the ground field. In particular, the conjecture that the Grothendieck groups of locally trivial sheaves and coherent sheaves on such varieties are rationally isomorphic fails badly.

متن کامل

Differential algebra and generalizations of Grothendieck’s conjecture on the arithmetic of linear differential equations

We prove that a nonlinear version of the Grothendieck-Katz conjecture (essentially in the form given by Ekhedahl, Shepherd-Barron and Taylor) is equivalent to the original Grothendieck-Katz conjecture together with a certain differential algebraic geometric/model-theoretic statement: a type over C(t) with “p-curvature 0 for almost all p” is nonorthogonal to the constants.

متن کامل

Étale Cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields

We prove a general inequality for estimating the number of points of arbitrary complete intersections over a finite field. This extends a result of Deligne for nonsingular complete intersections. For normal complete intersections, this inequality generalizes also the classical Lang-Weil inequality. Moreover, we prove the Lang-Weil inequality for affine as well as projective varieties with an ex...

متن کامل

Algebraic Solutions of Differential Equations

The Grothendieck–Katz p-curvature conjecture predicts that an arithmetic differential equation whose reduction modulo p has vanishing pcurvatures for almost all p, has finite monodromy. It is known that it suffices to prove the conjecture for differential equations on P1−{0, 1,∞}. We prove a variant of this conjecture for P1−{0, 1,∞}, which asserts that if the equation satisfies a certain conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008